Základní princip vodíkového článku je sice obecně znám, ale jak funguje celý systém pohonu od vstupu vzduchu po roztočení kol vozu?
Palivový článek je elektrochemické zařízení, ve kterém sloučením vodíkového paliva s kyslíkem dochází ke vzniku elektřiny, tepla a vody.
Vodík se uchovává v tlakové nádobě a kyslík se odebírá ze vzduchu. Vzhledem k tomu, že zde nedochází k procesu spalování, neuvolňují se škodlivé emise a jediným vedlejším produktem je teplo a čistá voda.
Palivový článek v podstatě funguje jako elektrolýza naruby, používá dvě elektrody oddělené elektrolytem nebo membránou. Anoda (záporná elektroda) přijímá vodík a ke katodě (kladná elektroda) je přiváděn kyslík. Katalyzátor na anodě rozděluje vodík na kladně nabité vodíkové ionty a elektrony.
Membrána používá polymerní elektrolyt a je vodivá pro protony, nikoliv pro elektrony. Vodík z anody může zároveň s protony procházet skrz membránou, elektrony ji musí obejít přes elektrický obvod, tím vzniká elektrický proud.
Ionizovaný kyslík migruje k anodické části, kde se slučuje s vodíkem a vzniká voda. Odpadním produktem je voda a teplo.
Palivový článek dává v zátěži 0,6 – 0,8 V. Pro dosažení vyšších napětí se články spojují do série a vytváří jednotku palivových článků.
Palivové články pracují nepřetržitě, dokud není přerušen přívod paliva nebo okysličovadla k elektrodám. Tolik teoretický popis. Jak to vypadá ve skutečnosti u systému palivové jednotky Mirai 2 .generace ukazuje video Toyoty.
Tato 2. generace vodíkového pohonu je ve videu nazývána Systém Palivového Článku (Fuel Cell System). Video ukazuje jak bylo dosaženo zvýšení výkonu a akcelerace 2. generace nové Toyoty Mirai a porovnává hodnoty 1. a 2. generace.
Popisovaný Systém Palivového Článku (FCS) se skládá z :• jednotky palivových článků (FCU) umístěné v přední části vozidla v motorovém prostoru• trakční baterie (Battery) umístěné za zadními sedadly• trakčního elektromotoru (Motor) u zadní nápravy, kterou i pohání• řídící výkonové jednotky (Power Control Unit) umístěné v motorovém prostoru hned za stěnou oddělující kabinu od motorového prostoru• třech vysokotlakých palivových nádrží
Zvýšený rozsah dojezdu nové Toyoty Mirai je kromě vyšší efektivity FCS dán především zvětšením obsahu zásoby vodíku díky použití třech zásobníků. Layout rozložení palivových nádrží je ve videu velmi názorný a dobře ukazuje prostorovou náročnost vodíkového pohonu.
Podrobný popis funkce vodíkového pohonu – systému palivového článku (Fuel Cell System) ukazuje, že okolní vzduch obsahující kyslík (O2) je nasát a tlačen kompresorem do jednotky palivového článku (Fuel Cell Unit).
V pohonné jednotce FCU při chemické reakci paliva-vodíku s kyslíkem (O2), vzniká voda (H2O), elektrický proud a odpadní teplo.
Jednotka palivového článku dodává elektrický proud přímo do trakčního elektromotoru a automobil vypouští při jízdě pouze vodu. Pomocí volby jízdního režimu (Drive Mode Selection) a sešlápnutí akcelerátoru určujeme míru zvýšení výkonu a akceleraci vozu.
Jednotka palivového článku dává výkon až 114 kW. Vlastností palivových článků je, že se zvyšující zátěži se snižuje jejich účinnost. Proto při akceleraci řídící jednotka výkonu jednotky palivového článku (Fuel Cell Power Control Unit) zajistí, že elektrický proud do elektromotoru dodávají palivové články i lithiová trakční baterie.
Spolupráce jednotky palivového článku a trakční baterie tak zajistí dostatek elektrické energie pro působivou akceleraci nové Toyoty Mirai při zcela bezhlučném provozu.
Obnova energie (Energy regeneration) v trakční baterii je zajištěna účinnou rekuperaci vozidla při deceleraci a průběžným dobíjením palivovými články při jízdě ustálenou rychlostí.
Díky tomu a použitím třech zásobníku paliva byl dojezd zvýšen o 30% oproti Mirai první generace a dojezd 2.generace Toyoty Mirai je 850 km dle WLTC, to je dle WLTP 650 km.
Vynikající provozní vlastnosti nové Toyoty Mirai dokládá i rychlost tankování. Přibližně za 5 minut se do třech nádrží naplní 142,2 litrů vodíků oproti 122,4 litrů u předchozího modelu. Nová Mirai má v porovnání s minulou generací větší dojezd, je výkonnější a 100% bezemisní, z hlediska karoserie aerodynamičtější a mnohem krásnější.
Zdroj: TOYOTA, YOUTUBE, Wikipedie
Modely úspěšné automobilky Cupra prošly v nedávné době faceliftem, který se týká i pohledného kombíku Leon Sportstourer. Na první pohled by se mohlo zdát, že se jedná jen o lehké omlazení designu, jak to u faceliftů bývá zvykem, jenže to je omyl. Změněna byla jedna velice podstatná věc, která tento sportovní kombík posunula do vyšší ligy.
Extrémní výkon přes 1.000 kW byl na běžný provoz až příliš – alespoň podle Xiaomi, které svůj hypersedan SU7 Ultra softwarově omezilo. Po silné kritice uživatelů ale automobilka otočila a výkon hodlá znovu uvolnit. Informoval web Carnewschina.
Do naší recenze tento týden zavítala modernizovaná Toyota ProAce Verso v prodloužené verzi L2, která vychytala drobné nedostatky starší verze. Jedná se o víceúčelového parťáka, který je překvapivě komfortní. Početnější rodiny, které si nemohou dovolit Multivan či Mercedes-Benz třídy V, budou dost možná překvapeni, že se jedná o konkurenceschopného rivala.
S příchodem elekromobility jsme byli svědky vzniku hned několika opravdu rychlých aut na baterky, která na semaforu sice potrápila kde jaký supersport, ale při řízení chyběly emoce a ani v zatáčkách to mnohdy nebyla moc zábava. Rychlost zkrátka neznamená automaticky zábavu a proto vznikl Ioniq 5 N, který se rozhodl zbořit mýty o tom, že elektromobil nemůže být zábavný. Jak se to podařilo?